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Abstract

Genetics play a key role in venous thromboembolism (VTE) risk, however established risk factors 

in European populations do not translate to individuals of African descent due to differences in 

allele frequencies between populations. As part of the fifth iteration of the Critical Assessment of 

Genome Interpretation, participants were asked to predict VTE status in exome data from African 

American subjects. Participants were provided with 103 unlabeled exomes from patients treated 

with warfarin for non-VTE causes or VTE and asked to predict which disease each subject had 

been treated for. Given the lack of training data, many participants opted to use unsupervised 

machine learning methods, clustering the exomes by variation in genes known to be associated 

with VTE. The best performing method using only VTE related genes achieved an AUC of 0.65. 

Here we discuss the range of methods used in the prediction of VTE from sequence data and 

explore some of the difficulties of conducting a challenge with known confounders. Additionally, 

we show that an existing genetic risk score for VTE that was developed in European subjects 

works well in African Americans.
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1 Introduction

There are 300,000 to 900,000 cases of venous thromboembolism (VTE) a year in the United 

States alone (Beckman, et al, 2010). VTE captures both deep vein thrombosis (DVT) and 

pulmonary embolism (PE). There are differences in the incidence of VTE based on ancestry; 

individuals of African ancestry have a 30–60% higher incidence of VTEs than people of 

European ancestry (Roberts et al., 2009; Zakai & McClure, 2011). VTE risk is 

multifactorial, both environmental and genetic factors are involved (Feero, 2004). For 

individuals of European descent, the commonly seen VTE risk factors are F5 R506Q 

(rs6025:G>A; three to fivefold increased risk of VTE in carriers) and F2 G20210A 

(rs1799963:G>A; two to threefold increased risk of VTE in carriers) (Middeldorp & van 

Hylckama Vlieg, 2008; Rosendaal & Reitsma, 2009).

However, the genetic variants that confer risk in populations of European descent are nearly 

absent in African Americans, and population-specific genetic factors influencing the higher 

VTE rate are not well characterized (Dowling, et al., 2003). A recent study identified a 

population-specific genetic risk factor in African Americans, but much of the genetic risk is 

still undiscovered (Daneshjou et al., 2016). Previous work has been done to develop genetic 

risk models for VTE in European populations, but no such risk model exists for individuals 

of African descent and the existing models have not been tested in African populations 

(Soria et al. 2014).

The Critical Assessment of Genomic Interpretation (CAGI) aims to objectively assess the 

prediction of phenotypic impacts of genetic variation. In the fifth iteration of CAGI, 

participants were challenged to predict the VTE status of 103 African American individuals 

from exome data. This dataset was used as part of a warfarin dosage prediction challenge in 
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CAGI 4, where participants were asked to predict the precise warfarin dosage of each 

individual (Daneshjou et al., 2017). VTE often requires long term use of anticoagulants. The 

dataset comprised 66 individuals with a VTE diagnosis and 37 individuals on warfarin for 

non-VTE causes (such as atrial fibrillation prophylaxis, AF). Thus, we were able to 

repurpose this data CAGI 5 and participants were asked to distinguish between individuals 

that were prescribed warfarin for a clotting disorder versus those that were prescribed 

warfarin for non-VTE purposes.

2 Methods

2.1 Data distribution

Participants were provided exome data for all 103 subjects in the VCF file format as well as 

corresponding covariate data. The covariate data included was subject age, height, weight, 

sex, and drug regimen (aspirin, amiodarone, and warfarin dose). Amiodarone is an 

antiarrhythmic drug used to treat atrial fibrillation, which could be a clear sign that the 

subject belonged in the AF group. However, only one subject was on amiodarone, so this 

conferred no predictive advantage to the participants. Participants consented to the CAGI 

data use agreement.

2.2 Predicting phenotypes

Participants were asked to make VTE status predictions for all 103 subjects in the provided 

data. No labelled training data was provided. Participants were required to return a text file 

with predicted disease status and confidence in the prediction for each subject. They were 

also provided with a validation script to check their output formatting. Participants were 

asked to provide a brief description of their prediction methods for each submission. The 

prediction results were presented at the CAGI 5 meeting.

2.3 Data quality

The data had previously undergone rigorous QC using ancestry informative markers to 

confirm self-reported ancestry and identity by state (IBS) analysis in order to ensure that 

samples were not related, as previously described (Daneshjou et al., 2014).

2.4 Assessing predicted phenotypes

In order to assess the submissions of each group, several evaluation metrics were used. 

Predictions were evaluated using area under the ROC curve (AUC), accuracy, sensitivity, 

specificity, and F1 scores. Some participants submitted binary class predictions rather than 

probabilities. In order to fairly evaluate predictions across all groups the predictions that 

were submitted as probabilities were binarized using a cutoff of 0.5, where a score greater 

than 0.5 indicates a VTE prediction. Accuracy, sensitivity, specificity, recall, and F1 scores 

were then computed with the binarized data, whereas AUC was calculated on the submitted 

scores.
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2.5 Establishing a baseline

A baseline prediction score was calculated using the multilocus genetic risk score proposed 

by Soria et al. The proposed method uses a linear model of 17 loci across nine VTE related 

genes. To compute the scores the number of the alternate alleles at each site was multiplied 

by the corresponding coefficients proposed by Soria et al. As with the participant submitted 

scores, the genetic risk scores were binarized using a threshold of 0.5 prior to calculating 

accuracy, sensitivity, specificity, recall, and F1 scores, and the raw scores were used to 

compute AUC.

3 Results

We assessed 14 submissions of phenotype predictions from seven groups. As no training 

dataset was provided, most participants chose to use unsupervised models trained on variants 

from genes previously reported to be associated with the phenotypes. Some groups used 

burden based scoring methods, scoring samples by the frequency of damaging variants in 

selected genes.

Each of the participants formulated their own strategy for predicting phenotype from the 

exome data. Although each was unique, there were many similarities between the methods 

employed (Figure 1). All submissions but one primarily used the genetic data, each group 

first selected genes related to the phenotypes of interest from a disease-gene database, then 

used the variants in those genes for downstream analysis. Half of the fourteen submissions 

employed an unsupervised approach, clustering the variants from the selected genes using a 

variety of approaches. Clustering methods included principle component analysis, k-means 

clustering, and a single submission using a deep learning-based approach with autoencoders. 

Six of the groups employed scoring-based methods to the variants within the selected genes 

to calculate an overall burden score for each subject. A single submission did not use the 

genotype data at all and trained a logistic regression classifier to predict VTE status based 

clinical covariates.

The dataset was originally collected to study the genetics of warfarin dosage and had been 

previously published on and the original publication reports that VTE status is significantly 

associated with warfarin dosage (Daneshjou et al., 2016, Supplementary Figure S1). 

Warfarin dosage was provided to the participants as a covariate for each subject. The known 

relationship between VTE status and warfarin dose in the dataset was exploited by several 

groups in their predictions. The most extreme case classified individuals as VTE patients if 

they were on a high warfarin dose, and classified individuals on a low warfarin dose as AF. 

This was the best performing method overall achieving 72% accuracy. Since warfarin dosage 

is largely influenced by genetics, several groups included genes involved in warfarin 

pharmacokinetics and pharmacodynamics in their models. Overall, five of the 14 

submissions used knowledge that warfarin dosage is associated with VTE status in this 

dataset in some form.

Of the nine submissions that did not use warfarin dosage to inform their predictions, all 

utilized either an unsupervised, clustering-based, approach to distinguish the two classes, or 

used various methods to score variants based on predicted deleteriousness. The top 
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performing group that did not inform their predictions with warfarin dosage information 

achieved an AUC of 0.65. This method selected genes associated with VTE, pulmonary 

embolism, and deep vein thrombosis (25 genes total) from DisGeNET and performed k-

means clustering on variants determined to be non-neutral by SNAP (Pinero et al, 2017; 

Bromberg et al, 2008). The distribution of AUC scores for all predictions can be seen in 

Figure 2 and a complete list of the scores for each submission is presented in Table 1. 

Details of all prediction methods can be found in the supplementary material.

A baseline prediction accuracy was generated using a linear model proposed by Soria et al. 

The baseline model outperformed all submissions that did not use warfarin, achieving a 

prediction accuracy of 67% and an AUC of 0.71.

4 Discussion

This CAGI exome prediction challenge has yielded several insights into the genetics of VTE 

in African Americans as well as insights into the challenges conducting prediction 

challenges.

Predicting VTE risk from genetic sequence is a difficult task and the challenge offered in 

CAGI 5 was no exception. Participants were asked to differentiate exomes of individuals 

suffering from VTE and those who may be treated with warfarin for a different indication. 

This task was further complicated by the lack of training data to for participants to validate 

their proposed methods. This led most participants to develop methods using existing 

biological knowledge to perform feature selection.

Most participants opted to use clustering-based approaches to predict VTE status. This was a 

prudent decision given the lack of training data and the stated goal of distinguishing two 

traits. The other common approach was to score variants within genes based on their 

predicted deleteriousness, then to create a final score for each individual based on the 

number of deleterious variants. Although the best performing method used a clustering 

approach (k-means), there was no clear advantage to using clustering methods over scoring 

methods.

All groups subset the exome to genes known to be associated with VTE or AF to use for 

downstream predictions. The groups with the top two highest scoring submissions both used 

DisGeNET to select phenotype associated genes. There is clear value in limiting the search 

space of the genome and DisGeNET seems to be a useful asset for selecting phenotype 

associated genes. Groups 1 and 5 (which accounted for 5 of the top 6 submissions that did 

not use warfarin), both used DisGeNET to select genes for their predictions but then applied 

different methods to predicting subject status from those genes.

One major point of contention in conducting this challenge was the confounding effect of 

warfarin on the prediction task. Participants were asked to make predictions about VTE 

status with the given dataset but were not advised to avoid using warfarin dosage which may 

be a confounding variable unique to this dataset and not broadly correlated with VTE risk. It 

is therefore reasonable that the participants sought the best performance possible and used 

the previously published correlation between VTE and warfarin dose in this dataset. This 
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does, however, go against the spirit of the CAGI experiment, which is meant to better 

understand the impact of genetics on phenotype and this challenge in particular aimed to 

improve our collective ability to predict VTE from genetic data. For this reason, we have 

divided the prediction results between those who used warfarin dosage information, either 

directly (using the subjects warfarin dose) or indirectly (through the inclusion of warfarin 

dose related genes), in their models.

The point was raised at the CAGI conference that if this confounding factor was known, why 

give the warfarin dosage to participants at all? This was due to a miscommunication between 

the data providers and the conference organizers. However, it may have made little 

difference as the participants were provided with the entire exome and there is a strong 

genetic relationship between warfarin dosage and genetics. In hindsight, it may have been 

better for the challenge to not provide warfarin dosage to the participants and to remove 

genes related to warfarin pharmacokinetics and pharmacodynamics from the exomes. 

Alternatively, it may have been better to explicitly inform the participants to avoid using any 

knowledge about warfarin in their predictions.

In order to assess the submitted predictions against an existing gold standard we calculated 

genetic risk scores for each exome using the method proposed by Soria et al. The genetic 

risk scores calculated using this method achieved an AUC of 0.71, greater than that of any 

submitted method that did not use warfarin dose in their predictions. This method was 

developed using data from individuals of European descent and had not been previously 

validated in individuals of African descent. The AUC achieved by this method in African 

Americans exceeds the reported AUC in the original study population (0.677). A different, 

five locus, genetic risk score had previously been tested in African populations and found to 

not perform as well as it did in whites (Folsom et al, 2015). This suggests that the method 

proposed by Soria et al may be clinically useful in predicting VTE in African Americans and 

could warrant further clinical validation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
General participant workflow. Each group formed their own approach to predicting 

phenotypes of the exomes, but there were some similarities across all submissions. All 

groups subset the exome into genes known to be involved in the phenotypes of interest, then 

made predictions based on the variants in those subset genes. Some groups generated scores 

for each individual based on burden of variants of a certain class. Others clustered the 

genotypes alone and segmented the clusters into predicted phenotypes.
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Figure 2. 
Area under the ROC (receiver operating characteristic) curve for all submissions. 

Submissions that used knowledge of warfarin confounding in the dataset (either by including 

the warfarin dose or including genes involved in warfarin pharmacogenetics) are shown in 

red, submissions that did not use the warfarin confounding in any way are shown in blue. 

The error bars indicate the 95% confidence interval of the AUC.
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Figure 3. 
Performance of baseline method on prediction of venous thromboembolism. Here we show 

the risk scores and predictive performance of the genetic risk score developed by Soria et al. 

We show the distribution of risk scores across all patients with subjects with VTE shown in 

blue and those without VTE shown in gray (left). We also show a ROC curve to illustrate the 

predictive performance of the baseline method (right).
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Table 1.

Evaluation metrics for all submissions and for the baseline method. The table is broken up by submissions that 

used the known warfarin confounding, those that did not, and the baseline method. Within each group scores 

are sorted by AUC. Accuracy, sensitivity, specificity, and F1 are calculated using a cutoff of 0.5 for all 

predictions.

Description Submission Approach AUC Accuracy Sensitivity Specificity F1

Did not use warfarin in prediction

Group 5a Unsupervised 0.65 0.51 0.26 0.95 0.40

Group 1b Scoring 0.60 0.60 0.59 0.59 0.65

Group 5c Unsupervised 0.59 0.63 0.70 0.49 0.70

Group 3 Scoring 0.59 0.34 0.23 0.54 0.31

Group 1a Scoring 0.57 0.47 0.30 0.76 0.42

Group 5d Unsupervised 0.53 0.59 0.73 0.32 0.69

Group 2 Scoring 0.49 0.41 0.12 0.92 0.21

Group 7a Unsupervised 0.48 0.41 0.21 0.76 0.31

Group 5b Unsupervised 0.47 0.53 0.65 0.30 0.64

Used warfarin in prediction

Group 4 Supervised 0.76 0.70 0.71 0.65 0.75

Group 6a Scoring 0.65 0.72 0.85 0.46 0.79

Group 6d Unsupervised 0.61 0.64 0.70 0.51 0.71

Group 6c Unsupervised 0.44 0.47 0.53 0.35 0.56

Group 6b Unsupervised 0.43 0.47 0.56 0.30 0.57

Soria et al. Baseline Genetic risk score 0.71 0.67 0.68 0.65 0.73
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